Адсорбционные свойства глинистых минералов

Материалы студентам (рефераты, курсовые, дипломные) » Анализ возможностей использования сорбентов при очистке сточных вод » Адсорбционные свойства глинистых минералов


Модифицирующее действие азотсодержащих органических соединений существенно зависит от их химической природы. Так, в случае применения для модифицирования 2%-ных растворов триэтил- и этиламина полученный триэтиламинобентонит характеризуется повышенной адсорбционной способностью по парам бензола в области малых и средних давлений и пониженной адсорбционной способностью при p/ps ~ 1. Более существенное влияние на свойства глины оказывает этиламин, который повышает адсорбционную способность глины во всем интервале относительных давлений. Еще большее модифицирующее действие наблюдается во время применения солянокислого этиламина, что видно из приведенных на рис. 11 данных.

Значительное гидрофобизирующее действие оказывают высокомолекулярные амины. Это хорошо иллюстрируется изотермами, приведенными на рис. 12. Глины могут быть гидрофобизоваными и фтористыми соединениями. При обработке природного и активированного гумбрина подкисленным раствором фтористого аммония наблюдается понижение адсорбционной способности этих адсорбентов по парам воды (табл. 1.5). [93]

Рис 10. Изотермы адсорбции паров азота при -196С на природной асканглине (О) и глине, модифицированной этилтрихлорсиланом (*), триметилхлорсиланом () и диметилдихлороиланом ()

Рис. 11. Изотермы адсорбции паров бензола при 20° С на асканглинах: 1 - природная асканглина; глины, модифицированные алкиламинами: 2 - 2% (C2H5)NH2; 3 - 2% (C2H6)NH2Cl; 4 -- 2%(C2H5)N

Рис. 12. Изотермы адсорбции паров воды на природной асканглине (1) и асканглине, модифицированной 10%-ным (2) и 20%-ным (5) растворами октадециламиноацетата

Степень гидрофобизации в этом случае меньше, чем при использовании органических гидрофобизаторов. Из приведенного выше материала ясно видно, что химическим модифицированием удается значительно гидрофобизировать природные пористые и высокодисперсные тела, а также увеличить их адсорбционные свойства.

Глава 2. Методика эксперимента

2.1 Методы исследования. Оборудование и реактивы

2.1.1 Рентгенографический метод

Под рентгенографическим анализом понимается совокупность разнообразных методов исследования, в которых используется рентгеновское излучение - поперечные электромагнитные колебания с длиной волны 102 - 102Е.

В методе используется монохроматическое рентгеновское излучение, обычно линии К-серии (возникающие при переходе электронов в атомах с L-оболочки на К-оболочку) металлов от хрома (обозначается CrK) до молибдена (MoK), длины волн которых лежат в интервале от 2,3 до 0,7 Е.

Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественно дифракционной решеткой. Сущность рентгеновских методов анализа как раз и заключается в излучении дифракционной картины получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов.

В основе рентгенографического анализа лежит уравнение Вульфа-Брэгга, связывающее угол падения или отражения на атомную плоскость рентгеновского луча с его длиной волны и величиной межплоскостных расстояний d:

n = 2d sin,

где n - целое число (1, 2, 3…), называется порядком спектра или порядком отражения.

При дифрактометрической съемке угол вычисляют по реперным отметкам, проставляемым автоматически на диаграммной ленте при съемке рентгенограммы через определенное число градусов (1; 0, 5;…). По найденным значениям и известной длине волны применяемого рентгеновского излучения определяют величины межплоскостного расстояния d, используя уравнение Вульфа-Брегга (величина n - порядок отражения - принимается в этом случае равной 1).

Перейти на страницу: 1 2 3 4 5