Острая гипоксия

Экология человека » ОБЩИЙ КУРС ЭКОЛОГИИ ЧЕЛОВЕКА » Адаптация человека к экстремальным условиям среды » Острая гипоксия


В зависимости от функционального состояния организма потребность его в О2 изменяется. При работе потребление О2 в испытывающих функциональную нагрузку тканях возрастает. Кислородное голодание возникает в случае, когда потребность тканей в кислороде превышает его поступление к ним.

Минимальный уровень энергии окислительных процессов и потребления О2, необходимый для поддержания структуры и функции, неодинаков для различных тканей организма. У высокоразвитых животных и человека наиболее чувствительной к недостатку кислорода является ЦНС – филогенетически самое молодое образование. По данным Э. Ламбертсена, мозг человека в среднем потребляет в покое 3,5 мл О2 на 100 г ткани в 1 мин. Это приблизительно 50 мл в 1 мин для всего мозга. Если учесть, что масса головного мозга составляет немногим более 2 % массы тела, то становится очевидной крайне высокая его потребность в О2. Последнее определяет то, что при остром кислородном голодании в первую очередь возникают нарушения деятельности ЦНС.

Основным показателем развития и тяжести гипоксического состояния является величина парциального давления О2 в альвеолярном воздухе (ра О2) и близкая к ней величина напряжения О2 в артериальной крови (ра О2). В связи с этим важно определять величины этих показателей при подъемах на различные высоты или при изменении содержания кислорода. Приближенный расчет ра О2 в зависимости от величины барометрического давления впервые был предложен в 1880 году И. М. Сеченовым. Им же было высказано мнение, что падение ра О2 до 20 мм рт. ст. уже несовместимо даже с кратковременным сохранением жизни.

В дальнейшем расчет ра О2 в зависимости от величины р О2 в окружающей газовой среде был уточнен; в частности, была введена поправка на величину дыхательного коэффициента. Расчет этой величины может быть осуществлен по следующей формуле:

где ра О2 – парциальное давление О2 в альвеолярном воздухе; В – барометрическое

где ра О2 – парциальное давление О2 в альвеолярном воздухе; В – барометрическое давление; р Н2О – парциальное давление водяных паров в легких, которое зависит только от температуры, и при температуре тела 37 °C равно 47 мм рт. ст.; ра СО2 – парциальное давление СО2 в альвеолярном воздухе; С – концентрация, процент содержания О2 в воздухе; R – дыхательный коэффициент.

В дальнейшем также была уточнена и величина критического значения ра О2. По мнению различных авторов, она составляет от 27 до 33 мм рт. ст. Критическое же значение р О2 в смешанной венозной крови составляет величину 19 мм рт. ст.

В зависимости от степени снижения р О2, от высоты подъема высотную гипоксию принято делить на острую

и хроническую.

Вследствие острой гипоксии возникает высотная болезнь, хронической – горная болезнь.

• К острой гипоксии условно относят все случаи значительного и быстрого снижения р О2 в окружающей газовой среде, в результате которого через относительно небольшой срок у здоровых, но ранее не адаптированных к гипоксии людей возникают различной тяжести патологические состояния. Реально такие ситуации бывают после быстрых подъемов на высоты 4000–5000 м и выше или после внезапного прекращения подачи кислорода во время высотных полетов.

Определенный практический интерес представляют данные, характеризующие время сохранения сознания и работоспособности у человека при пребывании его на различных высотах без кислорода.

Этот вопрос изучался еще до Второй мировой войны, преимущественно в СССР и Германии. Советские исследователи в основном определяли «высотный потолок»

т. е. время, через которое у обследуемых появлялись расстройства деятельности ЦНС, нарушения сознания, снижение работоспособности в процессе непрерывного подъема в условиях барокамеры. Немецкие исследователи ввели понятие о «резервном времени»

, которое характеризует тот отрезок времени, в течение которого у обследуемого на высоте после прекращения подачи О2 сохранялся еще минимальный уровень работоспособности, достаточный для принятия мер по спасению. В американской и английской литературе используется с этой же целью термин «время активного сознания»

(В. Б. Малкин, 1975).

Величина резервного времени зависит прежде всего от высоты, а также от индивидуальной устойчивости к гипоксии. С увеличением высоты индивидуальные колебания величины резервного времени суживаются, так что на высотах более 9000 м они практически стираются. На высотах 15 000 м и выше резервное время практически отсутствует (8-10 с). После быстрых подъемов (1–2 с) на такие высоты у обследуемых, независимо от того, дышат ли они воздухом или чистым кислородом, потеря сознания без всяких предвестников отмечалась уже через 15 с. В случаях, когда пребывание на этих высотах ограничивалось 8-10 с, после чего осуществлялся быстрый спуск с высоты, потеря сознания возникала через 5–7 с в период спуска. Это обусловлено тем, что кровь, обедненная О2, поступает в сосуды мозга через 5–7 с после начала спуска с высоты. Практически почти полное отсутствие резервного времени, равно как исчезновение защитного эффекта от дыхания О2, обусловлено тем, что при снижении барометрического давления до 87ммрт. ст. (высота 15 200 м) в легких р О2 становится равным нулю, даже если человек дышит чистым О2, так как парциальное давление паров воды (р Н2О) при температуре тела 37 °C в альвеолярном воздухе составляет 47 мм рт. ст., а (рА СО2) в нормальных условиях близко к 40 мм рт. ст. Таким образом, суммарное давление (р СО2 + р Н2О) равно 87 мм рт. ст. В связи с этим высоту 15 200 м, на которой барометрическое давление равно 87 мм рт. ст. по р О2, считают «эквивалентной» космическому пространству.

Перейти на страницу: 1 2 3 4