Адаптация человека к последствиям чрезвычайных ситуаций (катастроф)

Экология человека » ОБЩИЙ КУРС ЭКОЛОГИИ ЧЕЛОВЕКА » Адаптация человека к экстремальным условиям среды » Адаптация человека к последствиям чрезвычайных ситуаций (катастроф)


Определенную роль в улучшении снабжения тканей кислородом в данной ситуации может играть и сдвиг кривой диссоциации оксигемоглобина (КДО) вправо. Такой сдвиг в сочетании с ускорением обращения крови создает, однако, определенные физиологические проблемы для насыщения крови кислородом в легких.

Эффективность компенсаторных реакций организма при падении кислородной емкости зависит от ряда переменных, таких как фактическое содержание гемоглобина в крови, величина МОК, положение КДО крови, фактическая потребность в кислороде организма при данных конкретных условиях. Выяснение количественных отношений между этими параметрами представляет большой научный интерес с точки зрения анализа механизмов адаптации к снижению кислородной емкости крови, установления пределов их эффективности. Эмпирически указанные взаимоотношения проанализировать очень трудно из-за большой сложности и нелинейности взаимных влияний. Тем не менее для человека, который получил травму и потерял часть крови в результате несчастного случая или какой-либо катастрофы, необходима оценка эффективности механизмов физиологической адаптации с целью прогноза состояния и выбора мер по оказанию помощи.

Поэтому в настоящее время у больного срочно измеряют указанные выше параметры и определяют некоторые вспомогательные показатели, получая с помощью специальных программ на ЭВМ данные о состоянии и эффективности механизмов физиологической адаптации. Это новейший и весьма продуктивный метод изучения механизмов и пределов физиологической адаптации, который, несомненно, будет широко применяться.

Особая проблема адаптации к снижению кислородной емкости крови состоит в восстановлении числа эритроцитов и содержания гемоглобина. У человека этот процесс протекает очень медленно, однако разработка новых, наиболее активных стимуляторов гемопоэза позволяет значительно ускорить его. Следует отметить, что при массивных кровопотерях такая стимуляция оказывается недостаточно эффективной, возможно, из-за недостаточного количества так называемых стволовых клеток костного мозга, которые являются предшественниками всех форменных элементов крови. В среднем на 100 тыс. клеток костного мозга приходится только одна стволовая клетка. Недавно был разработан метод быстрого автоматического выделения стволовых клеток из костного мозга и выделен фактор SCF (facteur des cellules souches), стимулирующий дифференцировку стволовых клеток. Под воздействием этого фактора каждая стволовая клетка, введенная в организм, воспроизводит около 20 млн клеток крови за 24 ч. В принципе таким путем может быть решена проблема ускоренной адаптации к резкому снижению дыхательной емкости крови при массивных кровопотерях.

Аноксия мозга и пределы адаптации к ней

– наиболее важная проблема неотложной медицины при различных катастрофах и отдельных несчастных случаях, которая тесно связана с целым рядом фундаментальных проблем физиологии и биологии. С точки зрения физиологии сущность проблемы состоит в следующем. Во-первых, каков механизм сохранения мозгом жизнеспособности в течение некоторого времени после полного лишения его кислорода и энергии окисления. Во-вторых, каков первичный физиологический механизм изменений и прекращения функций мозга при аноксии и каковы физиологические механизмы восстановления этих функций.

К середине XX столетия в научной литературе распространилась точка зрения, согласно которой мозг человека сохраняет жизнеспособность – способность к восстановлению функций в течение 4–6 мин после остановки дыхания или 3–4 мин после остановки сердца. Определение указанных сроков имеет исключительно важное значение для неотложной медицины, поэтому в 1966 г. специальная комиссия, созданная при Национальной академии наук США, опубликовала рекомендации по методам реанимации человека при аноксии мозга. Врачам не рекомендовалось приступать к реанимации, если аноксия мозга длилась более 5–6 мин, так как по истечении этого срока восстановить физиологические функции мозга, как правило, не удается.

Мозг человека расходует в среднем примерно 1/5 часть энергетического бюджета организма в целом. Это составляет примерно 14,5 Вт или 14,5 Дж/с. Энергетические резервы тканей мозга составляют небольшую величину. В основном это глюкоза, которая содержится в количестве 0,45 мкмоль/г, т. е. около 0,00063 М для мозга массой 1400 г. При окислении этого количества глюкозы до СО2 и Н2О освободится примерно 1800 Дж, которые могут быть использованы для химической работы синтеза АТФ. Однако после прекращения доставки кислорода происходят только анаэробные превращения глюкозы. С точки зрения работы синтеза АТФ коэффициент полезного действия (КПД) анаэробиза уменьшается примерно в 15 раз. В таком случае легко рассчитать, что указанного количества глюкозы окажется достаточно всего на 8,2 с для работы нормальной интенсивности по синтезу АТФ из АДФ. Креатинфосфат содержится в мозге в количестве примерно 3,8 мкмоль/г. Согласно расчетам, это количество креатинфосфата теоретически способно обеспечить нормальную интенсивность синтеза АТФ из АДФ еще в течение примерно 30 с. Хорошо известно, что после внезапного перехода на дыхание чистым азотом человек теряет сознание через 10–15 с. Следовательно, энергетическая недостаточность прежде всего сказывается на функциональной активности мозга. Сохранение жизнеспособности требует, очевидно, значительно меньшей энергии. Заметим, что, по сделанным выше расчетам, энергетические резервы мозга могут быть израсходованы в течение 30–40 с. Однако следует помнить, что кровь еще обращается определенное время после остановки дыхания и глюкоза при этом в каком-то количестве будет утилизироваться из крови. Кроме того, надо учесть, что выключение функциональной активности при недостатке энергии (это условно можно отнести к явлениям адаптации) уменьшает потребности головного мозга в кислороде и энергии в 3–4 раза и более. Поэтому можно полагать, что в течение 3–4 мин после остановки дыхания мозг еще будет располагать некоторыми энергетическими резервами. Наступление необратимых изменений в мозге через 5–6 мин можно было бы объяснить полным исчерпанием энергетических ресурсов. С этой точки зрения установление предельных сроков сохранения жизнеспособности мозга при аноксии выглядит достаточно обоснованно.

Перейти на страницу: 1 2 3 4 5 6 7 8