Адаптация человека к последствиям чрезвычайных ситуаций (катастроф)

Экология человека » ОБЩИЙ КУРС ЭКОЛОГИИ ЧЕЛОВЕКА » Адаптация человека к экстремальным условиям среды » Адаптация человека к последствиям чрезвычайных ситуаций (катастроф)


Непосредственно у жертв морских катастроф определить состояние кислородного баланса в мозге и в миокарде вплоть до остановки спонтанного дыхания практически невозможно. Недавно исследователи попытались решить эту проблему на животных с помощью измерения р О2 в коре мозга крыс с помощью кислородного ультрамикроэлектрода с диаметром 3–5 мкм, включая изоляцию. Такие электроды практически не повреждают ткани и позволяют измерять р О2 в точечных участках между микрососудами. Из-за сложности методики такие электроды редко применяются в научных исследованиях. Е. П. Вовенко (1993) произвел соответствующие измерения с помощью кислородных ультрамикроэлектродов и установил, что при охлаждении в воде белых крыс величина р o2 в коре головного мозга остается на исходном или даже повышенном уровне вплоть до момента полной остановки дыхания, которая происходит при температуре мозга около 17 °C. Н. А. Слепчук (1995) показала, что у охлаждаемых крыс после полной остановки дыхания при температуре мозга около 17 °C нагревание специальным миниатюрным термодом продолговатого мозга на 2–3 °C приводит к восстановлению дыхательных движений, хотя тело еще продолжает охлаждаться.

Эти опыты имеют важное значение, так как показывают, что выключение важнейших центров мозга при охлаждении организма происходит не в результате гипоксии, а в результате прямого действия на нервную ткань низкой температуры. Можно предположить, что постепенное уменьшение частоты сокращений сердца при гипотермии имеет аналогичный механизм.

Такой вывод и такое предположение имеют важное значение в разработке методов неотложной медицины для спасения человека при глубокой гипотермии в результате несчастных случаев.

4. Механизм действия холода, нарушающего физиологические функции.

Согласно теории П. Хочачка (1986), в основе действия холода на клетку так же, как и при недостатке кислорода, лежит повышение концентрации ионов кальция в цитозоле, что дезорганизует биохимические реакции и ведет к разрушению клеточных структур. Причина повышения концентрации ионов кальция аналогична – недостаток энергии, однако происхождение энергетической недостаточности при действии холода иное и заключается в утрате под действием холода четвертичной структуры и распаде на субъединицы важнейших ферментов клетки – митохондриальной АТФ-азы, Ацетил-КоА-карбоксилазы, пируваткарбоксилазы и др. Энергетические циклы в клетке нарушаются, и возникает энергетическая недостаточность. Недостаток энергии для удаления из цитозоля избытка ионов кальция приводит к увеличению его концентрации в клетке и к дезорганизации обмена веществ, которая практически идентична происходящей при гипоксии. Понятно, что при гипотермии все эти процессы развиваются чрезвычайно медленно по сравнению с гипоксией при нормальной температуре тела.

5. Механизмы и пределы физиологической адаптации к острому охлаждению.

• В соответствии с современными данными при внешнем охлаждении организма сигналы от холодовых терморецепторов кожи и от термочувствительных нейронов разных отделов центральной нервной системы конвергируют к интегративным нейронам в ядрах заднего гипоталамуса.

• В названных нейронах вырабатывается «управляющий» сигнал, который способствует резкому сужению кожных сосудов и вызывает повышение теплопродукции благодаря интенсивной холодовой мышечной дрожи.

• Происходящее при этом повышение потребностей в кислороде путем физиологической регуляции усиливает легочную вентиляцию и увеличивает МОК. У человека при эксидентальной гипотермии максимум теплопродукции, легочной вентиляции и МОК достигается при температуре в прямой кишке порядка 34–35 °C и температуре кожи около 25–30 °C.

• При дальнейшем охлаждении тела холодовая дрожь ослабевает и уровень теплопродукции снижается. Частично это объясняется угнетением деятельности холодовых терморецепторов кожи, которая охлаждается очень быстро. При температуре кожи 10–12 °C частота импульсации терморецепторов резко снижается. При температуре 5 °C многие терморецепторы перестают импульсировать, а при температуре 0–2 °C парализуются почти все холодовые терморецепторы. При падении температуры центра терморегуляции на 6–8 °C резко угнетается частота импульсации «холодовых» нейронов. Недавно К. П. Ивановым и др. (1995) был установлен следующий факт: при введении животному в вену терапевтической дозы ЭДТА, которая стимулирует отток ионов кальция из цитозоля рецепторов в межклеточную среду, частота импульсации холодовых рецепторов быстро восстанавливается даже при температуре кожи около 0 °C, что расширяет представления о пределах адаптации нервных структур к холоду.

Перейти на страницу: 2 3 4 5 6 7 8 9 10 11